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1. Introduction: 

The methods of Integral transforms (Sneddon [8]) have their genesis in nineteenth century 

work of Joseph Fourier and Oliver Heaviside. The fundamental idea is to represent a function 

 f x  in terms of a transform ( )F p  is  

   ( ) ,

b

a

F p K p x f x dx 
                                                                                                    

(1.1) 

where the functions  ,K p x  is called kernel.  
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There are a number of important integral transforms including Fourier, Laplace, Hankel, 

Laguerre, Hermit and Mellin transforms. They are defined by choosing different kernels 

 ,K p x
 
and different values for a and b involved in (1.1).  

In 1993, G. K. Watugala [9] introduced the sumudu transform to solve differential equations 

and control engineering problems. Weerakoon [10] has discussed this transform by deriving 

the Sumudu transform of partial derivatives.  

The Sumudu Transform is defined as follows (Watugala [9]): 

If  f t  is a function defined on the Real line, then Sumudu Transform of  f t is defined by 

       
0

;Re 0

t

p
e

F Sp f t f t dt p
p

 
 

  

                                                                           (1.2) 

There has been a great deal of interest in fractional differential equations (Miller and Ross [3], 

Oldham and Spanier [4]). These equations arise in mathematical physics and engineering 

sciences. There are many definitions of fractional calculus are given by many different 

mathematicians and scientists (see Podlubny  [5]). Here, we formulate the problem in terms of 

the Caputo fractional derivative (see Caputo [1],[2]), which is defined as: 

If   is a positive number and n  is the smallest integer greater than   such that 1n n   , 

then the fractional derivative of a function  f t  is defined by (see Podlubny [5]): 

 
 

 

 
1

0

1
nt

n

f xd f
C f t dx

dt n t x




   
      

                                                                       (1.3) 

Further we used the result due to (Katatbeh  and Belgacem [6]): 

     
1

0

0
r

n
r

r

d f
S F p f

t
p p

d













 
  

 
                                                                                  (1.4) 
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where n  is the smallest integer greater than  . 

2. Definitions, Notations & Some Results of Special functions  

Some special functions used in this thesis are as given below (See Rainville [7]) : 

The gamma function is defined as  

  1

0

x nn e x dx



                        where,  Re 0n                                                                  (2.1)    

 Here note that (2.1) can be extended to the rest of the complex plane, excepting zero and 

negative integer. 

Alternative definitions for Gamma Function (Rainville [7]) are 

 
    

!
lim

1 2 ...

n

z

z z
n

n n n n z
 

  
                                                                                  (2.2) 

 
1

1

1
nn

r

r

e n
n e

n r

  



 
   

 
                                                                                                    (2.3) 

where   is known as Euler’s constant and is defined as following: 

1 1 1
lim 1 ... log

2 3n
n

n




 
      

 
.                                                                                   (2.4) 

The Pochhammer symbol  
n

  (Rainville [7]) is defined by the equations 

      1 2 ... 1 , 1
n

n n                                                                                      (2.5) 

which is Generalization of factorial function. 
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If   is neither zero nor a negative integer, then we can define  
 

 n

n




 



.              (2.6) 

The ordinary binomial expression (Rainville [7]), defined as 

0

( )
(1 )

!

n
a n

n

a z
z

n






  .                                                                                                            (2.7) 

The Hypergeometric Function (Rainville [7]) is defined as  

 
   

 
2 1

0

, ; ;
!

n

n n

n n

a b x
F a b c x

c n





                                                                                             (2.8) 

where the series on R.H.S. of (2.8), when c  is neither zero nor a negative integer, is 

absolutely convergent within the circle of convergence 1x  , and divergent outside it; on the 

circle of convergence the series is absolutely convergent if  Re 0c a b   . 

The Generalized Hypergeometric Function (Rainville [7]) is defined as  

 
 

 

11 2
p

1 2
0

1

, ,..., ;
                   , ,..., ; !

p

i nn
ip

q q
q

n

j n
j

a
xa a a

F xb b b n
b














.                                                                                   (2.9) 

Here note that: 

1. If p q , the series (2.9) converges absolutely for every finite x . 

2. If 1p q  , the series (2.9) converges absolutely when 1x   and diverges when

1x  . 

3. If 1p q  , and 1x  , the series (2.9) converges absolutely when 
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1 1

Re 0
q p

j i

j i

b a
 

 
  

 
  . 

4. If 1p q  , the series (2.9) diverges for 0z  , and for 0z   its value is one. 

3. The solution of fractional Differential Equations: 

In this section, we obtain the solution of some fractional differential Equations using Sumudu 

Transform. 

(A) Consider the fractional Differential Equations is of the form 

5 3 1

2 2

5 3 1

2 2 2

2

cosh
d d d

t

dt d

x x

d

x

t t

    with initial condition      0 0; 0 0; 0 0x x x                     (3.1) 

Solution: Applying the Sumudu Transform (1.2) on both the sides of equation (3.1) and using 

(1.4), we have  

       

     

5 3 1

2 2 2

5 3 1

2

3 1 1

2

2

2

2
2 2

0 0 0

0 0 0
1

1

p p p p p x p x p x

p x p x p
p

X

x

  





 

 

  
 

   
 

  


 

                                                 (3.2) 

Further simplification yields,  

 
2

5 3 1

2 2 2

1

1 p
p

p p p

X
  









 
 

                                                                                                  (3.3) 

Taking inverse Sumudu Transform of (3.3) gives 
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 
   

 
 

   

 

1

2
1

2

0

1

2
1

2

0

1

2
3

2

0

1

2
3

2

0

1 1
e cos 3 3 sin 3

2 21
e

6

1
sin 3 e

1 12
e e erf

63

1 1
e 3cos 3 3 sin 3

2 21
e

6

1
sin 3 e

1 2
e

3

1
e

2

u

tt

u

tt
t

u

tt

u

tt

x t

t u t u

du

t u

du t
u

t u t u

d

u

u
u

t u

du
u

i

















    
      

    


 
 

 
 

    
      

    


 
 


















 erft i t

                               

(3.4)

 

Equation (3.4) is the solution of (3.1) 

Where  erf t  is the well-known error function (see Rainville [7]). 

 

(B) Consider the fractional Differential Equations is of the form 

3 1

2 2

103 1

2 2

2 log
d d

t

dt d

y

t

y
   with initial condition    0 1; 0 1y y                                             (3.5) 

Solution: Applying the Sumudu Transform (1.2) on both the sides of equation (3.5) and using 

(1.4), we have  

       
3 1

2 2

3 1 1

2 2 20 0 2 0 log2 ep p p p y p ppY y y 
  

     
 

 
 

                                   (3.6) 

Further simplification yields,  

 

3 1

3 1

2

2

2

2 3

2

loge p p
p

p p

p
Y


 

 

  




 
 

 

                                                                                         (3.7) 
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Taking inverse Sumudu Transform of (3.7) gives 

           
2 2

2

0

2e e
2 ln 4 e 2erf 2 8

4

u
t t

tt
y t u du t t i i tu    

 

 

           

                                                                                                                                ………...(3.8) 

Where  t  is the well-known Dirac Delta function (see Rainville [7]). 

Equation (3.8) is the solution of (3.5) 

 

(C) Consider the fractional Differential Equations is of the form 

3 1 1

2

7

2 2

2 2

5 3

2

2 td d d
e

dt dt

z

dt

z z
    with initial condition        0 1; 0 1; 0 1; 0 1z z z z            (3.9) 

Solution: Applying the Sumudu Transform (1.2) on both the sides of equation (3.9) and using 

(1.4), we have  

         

         

7 5 3 7 5 3 1

2 2 2 2 2 2 2

5 3 1 3 1

2 2 2 2 2

0 0 0 0

1
2 0 2 0 2 0 0 0

1

2p p p Z p p z p pz z z

z

p

p p p p pz z z z
p

      

    

     

       

 
  

 



                          (3.10) 

Further simplification yields,  

 

7 5 3 1

2 2 2 2

7 5 3

2 2 2

1
3 4 4

2

1 p
Z

p p p p

p

p p p

   

   


   











                                                                          (3.11) 

Taking inverse Sumudu Transform of (3.11) gives 
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      

   

5

2

1 1

1 1
erf e 4 erf 8 e

4 4

4 7
2, ;

215

t tt
z t t i i t t

t
F t t t



 


     

 
    

 

                                                         

(3.12) 

Hence, (3.12) is the required solution of (3.9). 

(D) Consider the fractional Differential Equations is of the form 

7 5 3

2 2

3

2 2 2

2

1 1
2 3 sin

d d d
t

dt dt dt

z z z
    with initial condition        0 0 0 0 0z z z z              (3.13) 

Solution: Applying the Sumudu Transform (1.2) on both the sides of equation (3.13) and 

using (1.4), we have  

         

         

7 5 3 7 5 3 1

2 2 2 2 2 2 2

5 3 1 3 1

2 2 2 2 2
2

2 3 2 0 2 0 2 0 2 0

3 0 3 0
1

3 0 0 0

z zp p p A p p z p p p

p

z

z z z zp zp p p p
p

      

    

  
 

     

       

 



                  (3.14) 

Further simplification yields,  

 
2

7 5 3

2 2 2

1

2 3

p

p
p

p p p

A
  



 
  

 

                                                                                              (3.15) 

Taking inverse Sumudu Transform of (3.15) gives 

 

 

32 2
5 2

1

/ 2

2

1 2 2

9 5 7
150 330 8 1; , ; 60 1; , ;

4 4 4

2
75 e erf 240 2e erf

2

7

4 4 4

t

t

F
t t

a Ft t t t

i t
i i t i



 




   
   


   

 
  














                               (3.16)

 

Hence, (3.16) is the required solution of (3.13). 
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4. Some Graphs: 

 

Figure 4.1: Plot of

 

 z t

 

 

Figure 4.2: Plot of

 

  Re z t
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Figure 4.3: Plot of

 

  Im z t

 

 

Figure 4.4: Plot of

 

  Re a t
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