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1. Introduction

The complex rehology of biological fluids has motivated investigations involving different
non-MNewtonian fluids. In recent years, non-Newtonian fluids have become more and more
important i1ndustrially. Academic cunosity and practical applications have generated
considerable interest in finding the solutions of differential equations governing the motion of
non-MNewtonian fluids. The property of these fluids 1s that the stress tensor i1s related to the
rate of deformation tensor by some non-linear relationship. These fluids present some
interesting challenges to researchers in engineering, applied mathematics and computer
science. Many materials such as drilling mud, clay ceating and other suspensions, certain oils
and greases, polymer melts, blood, paints and certain oils, elastomers and many emulsions
and some other thin and thick oils have been treated as non-IMNewtonian fluids Because of the
difficulty to suggest a single model, which exhibits all properties of non-Newtonian fluids,
they cannot be described simply as Newtonian fluids and there has been much confusion 1n
the classification of non-Newtonian fluids. Non-Newtonian fluids are usually classified as : (1)
fluids for which shear stress depends only on the rate of shear (11) fluids for which relation
between shear stress and rate of strain depends on time (111) the viscoinelastic fluids which

possess both elastic and wviscous properties. Thus for any non-Newtonian fluids the
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mathematical structure of the shearing stress and the rate of shear 15 always important. But
such a mathematical formulation 15 indeed a difficult task It 1s interesting to note that a very
nice work on non-Mewtonian fluid aleng with constitutive stress-strain relatienship has been
ciscussed by Wilkinson (1960) and Kapur (1982) in their text. Also stress-strain relationship
for 3-D Cartesian coordinate system for many non-Newtonian models has been denived by
Timol (1986). FEecently, a mest important article of stress strain relationship for viscous-
inelastic non-Newtonian fluids has been published by Patel and Timol (2010). They have

made a detail analysis for some important non-Newtonian fluids.

Understanding the flow phenomena along with the corresponding environmental changes
(pressure drop, concentration gradient, etc.) becomes important in many fields, such as liqud
transport through geo-membranes, effluent movement through filtration devices, and
chemical movement through protective apparel. The difference between Newtonian and non-
MNewtonian fluids and how they differ in their resistance to forced movement through a fabric
15 explained by Matthew W. Dunn (Dunn, 1999) using the stress-strain relationship. Indeed a
cdifficult task This 15 because there 15 a great diversity found in the physical structure of non-
MNewtonian fluids and hence 1t 15 quite difficult to recommend a single constitutive equation
which can be use to describe all above three classifications. For this reason many non-
MNewtonian fluid model for constitutive equation have been propesed and most of them are
empirical or semi-empirical. The present research on the flow problem for non-Newtonian
fluid 15 hampered by the lacking of proper classification of mathematical structure of a stress-
strain relationship. The attempt has been made to explain different models of Non-INewtonian

fluids with stress-strain relationship.

Shear Stress versus Shear Rate:

Most common fluids such as water, air and gasoline are Newtonian under normal conditions.
Non-Newtonian fluids occur commonly in our world These fluids, such as toothpaste, saliva,
otls, mud and lava, exhibit a number of behaviors that are different form MNewtonian fluids
and have a number of additional matenal properties. In general, these differences anse

because the fluid has a microstructure that influences the flow.

A plot of shear stress versus shear rate at a given temperature 15 a straight line with a constant
slope that 15 independent of the shear rate. We call this slope the viscosity of the fluad All
gases are Newtonian. Alse, law molecular weight liquids and solutiens of low molecular
weight substances in liquids are usually Newtomian. Some examples are aqueous solution of

sugar or salt.

Any fluid that does not obey the Newtonian relationship between the shear stress and shear
rate 15 called non-Newtonian. The subject of “"Eehology™ 1s devoted to the study of the
behavior of such fluids. High meolecular weight liquids which include polymer melts and
solutions of polymers, as well as liquids in which fine particles are suspended (slurnes and
pastes), are usually non-INewtonian. In this case, the slope of the shear stress versus shear rate
curve will not be constant as we change the shear rate. When the viscosity decreases with

increasing shear rate, we call the fluid shear-thinning. In the opposite case where the viscosity
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increase as the fluid 15 subjected to a higher shear rate, the fluid 15 called shear-thickening
(dilatants) Shear- thinnming behavior 15 more common than shear-thickening Shear—thinning
fluids also are called Pseudo plastic fluids. A typical shear stress versus shear rate plot for a

shear thinning fluid 15 given as Figure 1.

Shear Stress

=hear-thinming fluid

Shear Bate

Figare l: Graph for Shear-thinmng flad

We describe the relationship between the shear stress T and shear rate & as follows:

T=n6

where 7 15 called the "apparent viscosity” of the fluid, and 15 a function of the shear rate. In

-y

the above example, a plot of 7 as a function of the shear rate & locks like Figure 2. Many

shear —thinning fluids will exhibit Newtonian behavier at extreme shear rates, both low and

high

For such fluids, when the apparent viscosity 15 plotted against log shear rate, we see a curve
given as Figure 3.

The region where the apparent viscosity 15 approximately constant are known as Newtomian
region. The behavior between these regions can usually be approximated by a straight line on
these axes It 15 known as the power-law region. In this region, we can approximate the
behavior by logn=a+blog#

Which can be rewritten as n="ke"

Where k = exp (a). Instead of b we commonly use (n — 1) for the exponent and write a result

for the apparent viscosity as . n7 = kg™
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Shear-thinning fluid
Apparent Viscosity

& hear Rate

Figure 2: Graph of apparent viscosity vs shiear rate

Upon using the connection among the shear stress, apparent viscosity, and the sheer rate are

get the power-law model

r=k@" [F‘I <1 shear shimning, n>1shear th:'::kmﬁg]

Where n 15 called the power-law index MNote that n = 1 corresponds to Mewtonian behavior.

Typically, for shear thinning fluids, n lie between % and 1,:, . even though other values are

possible

Examples of shear-thinning fluids are polymer melts such as molten polystyrene, polymer
solutions such as pelyethylene oxide in water and some paints. You can see that when paint 15
sheared with a brush, 1t flows comfortably, but when the shear stress 15 removed, its viscosity
increases so that if no longer flows easily. Of course the solvent evaporates soon and then the
point sticks to the surface. The behavior of paint 15 a bit more complex than this, because the

viscosity changes with time at a given shear rate.

24



M Patel, H Strafi and M. G Timel /Int. e-]. for Edu. & Math. Vol 02, No. 04, (Aug. 2013, pp 21-36

Mewtonian Region
‘H"\.
H"\-\.
Log Apparent Hx
Viscostiy \\R Power - Law Re gion
,
Mevnionian Begiom
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Figure 3. Graph of log apparent viscosity vs log shear rate

wome slurries and pastes exhibit an increase 1in apparent viscosity as the shear rate 1s
increased. They are called shear thickening or dilatants fluids. Typical plots of shear stress

versus shear rate and apparent viscosity versus shear rate are shown as Figure 4

shear Stress /
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o~ Shear thickening fluid
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fﬁr

Shear Rate

Figure 4: Graph of Shear stress vs shear rate

wome examples of shear thickening fluids are corn starch, clay slurries and seolutions of
certain surfactants. Most shear-thickening fluids tend to show shear-thinming at very low
shear rates. When the apparent viscosity 15 plotted against log shear rate, we see a curve given

as Figure 3.
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Apparent Viscosity

Shear Rate

Figure 5: Graph of apparent viscosity vs shear rate

Another important type of non-Newtonian fluids 15 a viscoplastic or “yield stress” fluid. This

15 a fluid which will not flow when only a small shear stress 15 applied The shear stress must

exceed a critical value known as the yield stress 1, for the fluid to flow. For example, when

yvou open a tube of toothpaste, it would be good if the paste does not flow at the slightest
amount of shear stress. We need to apply an adequate force before the toothpaste will start
flowing. 5o, viscoplastic fluids behave like solids when the applied shear stress 15 less than
the yield stress. Once it exceeds the wield stress, the viscoplastic fluid will flow just like a
fluid Bingham plastics are a special class of viscoplastic fluids that exhibit a linear behavieor

of shear stress against shear rate. Typical viscoplastic behaviors are illustrated in figure 6.

Examples of viscoplastic fluids are dnlling mud, nuclear fuel slurries, mayonnaise, toothpaste
and blood. Also, some paints exhibit a yield stress.

Of course, this 15 not an exhaustive discussion of non-Newtonian behaviors. For instance,
some class of fluids exhibit time dependent behavior. This means that even under a given
constant shear rate, the viscosity may vary with time. The viscosity of a thizotropic liquid will
decrease with time under a constant applied shear stress. Howewver, when the stress is
removed, the viscosity will gradually recover with time as well. Non-dnp peints behave 1n
this way. The opposite behavior, where in the fluid increases in viscosity with time when a

constant shear stress 1s applied, 15 not as common, and such a fluid 1s called arheopectic fluid.

Another important class of fluids exhibits viscoelastic behavior This means that these fluids
bear both of solid (elastic) and fluids (viscous) properties. Viscoelastic fluids exhibat strange
phenomena such as climbing up a rotating shaft, swelling when extruded out of a dye etc. An

example of a common viscoelastic liquid1s egg-white
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viscaplastic fluid P

Shear Stress

Shear Rate

Figure 6: Viscoplastic behaviors.

You have probably noticed that when 1t flows out of a container, you can use a quick jerking
motion to snap it back into the container. Several industrially important polymers melt and
solutions are viscoelastic. Shear stress versus Deformation rate 1s presented by Figure 7.

—

o
A ?\3" / Non-Newtonan

T
%
)

Shear Stress

Newtonan

Deformation Rate ﬂ

by
Figure 7: Shear stress vs deformation rate

We have 1n definition of non-Newtonian fluids;

dy

~

i
Ty = k(ﬁ) This equation reduces to Newton’s low of viscosityforn=1& k=4 .

VISCO - INELASTIC FLUIDS:

A common feature of this class of fluids 1s that when at rest they are isotropic and
homogenous and when they are subjected to a shear, the resultant stress depends only on the
rate of shear However, this sub-class shows diverse behavior in response to applied stress. A
number of rheological models have been proposed to explain such a diverse behavior. Some
of these models which have attracted researchers are:
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1. Power law fluids: These fluids are characterized by the rheclogical equation

3 3
Ty = i [Z Z €1 Emj C
1=l

Tl

where k and n are called the consistency and flow behavior indices respectively. If n < 1, the
fluid 15 called pseudo plastic power law fluid and1f n > 1, 1t 15 called dilatants power law fluid
since the apparent viscosity decreases or increases with the increase shear of rate according as

n<lorn=>1

Values of the different parameters of power law fluids have been given by A B. Metzner
(1956).

2. Reiner — Rivlin fluids: Eeiner and Eivlin established that for an isotropic fluid, the most

general relation between the stress tensor t; and the rate of deformation tensor e; has the form

Where

1| Ou, aﬂj
E{i" = : _—
3 Ei:rj. o
p 15 an arbitrary hydrostatic pressure and the coefficient of wviscosity g and coefficient of

cross-viscosity i, depend on the invanants [;, I; and Js where

1

—

I =e I,=e e, ey

iir FF I |

and where the summation convention 15 used.

Another general relation between the stress tensor matnxz [t;] and the rate of

deformation tensor matnx [e;] which has been used s
[t:;;']z _F[‘ﬁg]'l' H[Eu']"'»u:t [E‘ru]] T A [‘5":;;']3 Tt
where f,, (i, i, are constants.

Farticular cases of the first equation has been studied by choosing g = 0 and by

assuming a particular form for u = u {I], I, ).

3. Bingham plastics: The empirical relation for the plastic flow of an i1sotropic fluid 1s
descnbedas T=2r, +ue

Where 7515 the yield value, a quantity equal to zere in Newtonian fluid Following

relation has been used by Oldroyd (1947)
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, Ji)—1
) l [ ]'} “fﬂ-, {JJ}EEU
elj=9 H J]]

L 0, . 1|'(J]i-:: T,.

33
Where J, = - > 2 Sy . and Sy are the components of the deviatoric stress tensor.
= iml el

4. Ellis Fluids: The rheological relation between the stress tensor 55 and the strain rate tensor
15 given in the form

SL" = ?-'a;' — PEy

z-1

[y e

3

ey = Ty T [Z i Tim rmij Ly

I=l =]

Where p 1s pressure, g;1s the matnx tensor, @ ,¢ and orare the fluid parameters. This flmd

exhibits the following interesting properties:

(1) ¢, = 0,1t behaves as a Newtonian fluid,
(1) ¢y = 0,1t gives a power law model,
(111) ¢ > 1, and if stress components are small, 1t approximates to Newtonian fluid,

(1v) cx <1, and 1f stress components are large, 1t approximates to Newtonian fluid,

(V) =1, it represents Newtoman fluid.

The value of the Ellis fluid parameters for solutions of Carboxymethylcellulose 1n water has
been given by J. C. Slattery (1959).

5. Reiner-Philippoff fluid: The rheological relation between the stress tensor 7 and the

strain rate tensor ey 15 given as

Ha ~ Hy

i
T T
)
2T,
4

Where iy, i and tyare the fluid parameters. Usual summation convention over values 1, 2,

T =| iy +

3 for the repeated indices has been assumed In the limiting cases, when the parameter 7
tends to zero or infinity, the constitutive equation reduces to that of Newtonian fluud with

viscosity py orpi .
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The values of the Eeiner-Philippoff parameters for various fluids been given by W. Philippoff

(1933).
6. Prandtl fluids: The empirical relation for the above class of fluids 1s

I:Asin'l(i}
c

where A and C are the material constants of the fluud A possible generalization 1s
1

(> 3 )

1=l =l

o
I
bd | =

5

Tml Tl

7. Eyring fluids: These are characterized by the fellowing empirical relation

r=2 +Csin (1]
B A

where A B and C are the fluid parameters. A possible generalization of above equation is

3 3 r =
(" =in [Z Z Im mi’}
1 =l m=l —
fj;r. = E gu. + l IU
x5
I=1 =l

8. Powell — Evring fluids: These fluids are charactenized by the relation

T =Ae+ Esmh _I(C'e],

Which are generalized to

_F

= Ae; + Bsmh - k" T

L)
(5]

Where A, B and C are the fluid parameters.

9. William son fluids: These fluids are governed by the following relation

Ae
B+e

r= +p e

The above relation may also be put as

e = arr+ﬁ+\f[{a@+ﬁ‘]+;f],
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Where &, 8 and v are the parameters of the flmud A possible generalization of first equation

15,

Aei,.
T..= I +#m9';r

u
33 T
pe(3y; ete)

f=] m=l

10. Rabinowitsch type fluids: The empirical relation for such fluids 1s

e =LI+ZB, rieH

g

This 15 generalized to

1
oy =%+ LB 1T,
0

11. Meter - Model: The constitutive equation for this class of fluids 15
T=—-nh

T and Abeing usual shear stress tensor and rate of deformation tensor respectively,

??:T?D'i‘ ??u_.??t:;_l,

1+7
r'l'lt

Where ny,77_ and T, are fluid parameters whose values have been tabulated by Meter and

Bird (1964). If may further be observed that for &« = 2, the equation reduce to FPeek —
Melean model, and for & = 3, 1t reduce to Eeiner — Philippoff model

VISCO — ELASTIC FLUIDS:

These fluids are posses certain degree of elasticity in addition to wviscosity. When a
viscoelastic fluid 15 1n motion, a certain amount of energy 15 stored up 1n the material as strain
energy while some energy 1s lost due to viscous dissipation. In this class of fluids unlike the
inelastic viscous fluids, one cannot neglect the strain, however small 1t may be, as it 1s
responsible for the recovery to the original state and for the possible reverse flow that follows
the removal of the stress. Dunng the flow the natural state of fluid changes constantly and
tries to attan the instantaneous state of the deformed state, but 1t does never succeed
completely. This lag 15 a measure of the elasticity or the so called "memory” of the fluids. We

now discuss the constitutive equations of various viscoelastic fluids.

1. Oldroyd fluid: The constitutive equation for the above fluid has been proposed by Oldroyd
(1950)
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S = Tix —Pgij
) Dt L : . ) DE® : .
o At g B¥ 0] 4 B g™ = 2| B 4, +v,E"E, g™
Dt Dt
1
and £;; = = I:Ut.j +U!,x}

—

Where 5j 15 the stress tensor, U; denotes the velocity vector, gix 15 the metric tensor, P 15 an

1sotropic pressure, fy1s a constant having the dimensions of viscosity, and A, A (relaxation

time and retardation time parameters respectively), p,.v,andv,are constants having the

cdimensions time. The denvative denoted by 15 the convected denvative of any tensor

Dt
Eﬂ[, defined in the form

DB™ aB*

- + U7 B™ ;W B™ +WriB™ - R B™ — EFp™
¢

I

Where W, = é{ULi —Uu.]

)

In this class of fluids all the non-Newtonian flow properties observed in veosco-elastic fluids
are present. These properties are present for all rates of shear, when six constants in second

equation satisfy the following conditions:

a, ::-crj_%

o, = +l4,-15 .
Where ! Ay g {11 P‘u}"l

Oy = Aty + (A =154 Iy,

and (A, =154, (A, — A0, )=0

2. Rivlin—Ericksen fluids: The general theory put forward so far from purely
phenomenological consideration 15 that by Eivlin-Encksen. The constitutive equation 1n this

CASE 15

S=-pl+¢ A + ¢ Ay + P A +§ A+ (A A + A A) + G (A A + A A7)
dr (A A7 +AVA) + g (AT Ay + AT AD)

Where p 15 an arbitrary hydrostatic pressure and ¢'s polynomial functions of the traces of the

various tensors occurring in the representation, matrices A; and A» are defined by

Ay = {“"i,.r' TV )

B P

. gAY | |
e | (1) i1l {1}
Air- =3 +‘I.-?Pfl&-‘? + A, v, + A v
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vp being velocity vector

On neglecting the squares and products of A-, we have
S=—pl+pa +p 4, + ﬁfllj

Where ¢, ¢, and ¢; are constants. It 15 customary to call ¢ the coefficient of ordinary

viscosity, ¢, the coefficient of viscoelasticity, and ¢, the coefficient of cross-viscosity.

Coleman and Nell (1960) have adopted a different approach to obtain the constitutive

equation. In this case, the constitutive equation 1s

S=—pl+$EY + 4BV + 4. BV

In the above equations, 5 15 the stress-tensor, v; and A; are the components of velocity

and acceleration in the direction of the i coordinates z;, p 15 an indeterminate hydrostatic

pressure and the coefficients ¢, ¢, and ¢; have already been defined above.

It has been reported that solutions of poly-isobutylene 1n cetane at 30°C simulate a

second order fluid, and the material constants for the solutions of various concentrations have
been determined by Markovitz (1964).

3. Walters fluid: The constitutive equation for the Walters liquid B 13 given by

S =— D8a t+ Tix

. [T t}_ﬁj [f—f'}l A+ dit .j1|mr{ ) de
TARELY Sl B ERTINT € X

where 5 15 the stress tensor, p an arbitrary 1sotropic pressure, g, the metric tensor of a fixed

coordinates system, ', z* the position at the time t” of the element which 15 instantaneously at

the point x” at time t, e}y the rate of strain tensor.

4. Maxwell fluids: The constitutive equation for this class of fluid has been proposed by

a . .
Maxwell as [l+ EE] T = E;ie:ﬁ'

Where A 15 the relaxation time for the stress.

POLAR FLUIDS:
The constitutive equations of three different models charactenzing polar fluids are as follows:

1. The model of Condiff and Dahler:
33
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¢—2n
rlmz(—p+ 2 dy | 6; +2nd,;

rli.r'll = fgﬁir. {xg.t.tg Vs~ ju-.t ]I

M.:(—g +£}, 5. +& [v. v,
i 1 3 kESE 7 I iJ J.I,

2. The micropolar model of Eringen:
Ty = (—p+ M.&)éﬁ "‘(jﬂ + ';:)‘“Tﬁ +k, (wy, —v;)
My=av, 05+ v ; + vy,

3. The model of Stokes:

Ty =—p+ Mm)csﬂ. +2ud;

~ P
Ty = =MWy — 5 By + 0,

Mﬁ = 43?1&',:'[ + 4‘7.:"Iwi._r'

Where 7, and T[] are the symmetric and antisymmetric parts of the stress tensor 7; and 1My

1s the couple stress tensor, G 1s the body couple, £ 1s the alternating tensor, w 1s the vorticity

and v represents micro rotation.

The parameters ¢, 77,4, 87,85, 4, i,k are all matenial constants being characteristics of each

polar fluid model.

DIPOLAR FLUIDS:

The constitutive equations for an incompressible dipolar fluid under 1sothermal conditions

have been proposed by Blenstein and Green

T; + ¢ c’Fﬁ =2u .:fu.
Dok T O T4 Oy = Iy 60, 15 {Va',_r't F Vi )""E’a Vi

Where v; 15 the velocity components, d; are the components of the rate of deformation tensor,

T, are the components of the stress tensor and O; 1s the Kronecker delta X, are the

components of dipolar stresses which are symmetric 1n the first two indices (the

antisymmetric part X of Emt i1 the first two indices does not contribute to the momentum

ik
equations), repeated index denotes summation, 15 the coefficient of viscosity, hy, hy and hs are

the material constants and are restricted by the tnequalities.
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Y .
oh +h, 20, 2hy+h, =20,

The functions ¢ and y, are related to the hydrostatic pressure p by
p=¢—=1;

The non-symmetric monopolar stress tensor o and the stress tensor t are connected by the

relation

_ ) Dvi )
ti =0, +Ek&.j —pld T A= Vg Veif— Fi.r' =Ty

where p 15 the density of the fluid | Fy; are the dipolar body forces per unit mass, d1s a matenal

constant and D/Dt denotes the matenal denvative.
ANISOTROPIC FLUIDS:

The constitutive equations for incompressible anisotropic fluids 1n Cartesian form are
ty;=—D 51_;' +2p:di1- +LL£1 + iy d g, My HH]H!- n; + 2, {d_;fk My M +.::fﬁ Ny M ]
With »n, =wyn; + A{dﬁ}ij —d g, My My HE)

Where n; are the vectors indicating preferred directions. It 1s assumed [consistent with] that
Ny np = 1,

this being a simplifying assumption which excludes effects like those of elasticity of

suspended particles. Here A's and ('s are matenal constants, 0,15 the Kronecker delta, p 1s

the arbitrary isotropic pressure and the dot denotes the matennal denivative. Here d and w

represent the symmetric and antisymmetnic parts of the velocity gradient tensor,

& _
i . _ _
~Wig = XNix = Mg

CONCLUSION:

There are several types of non—INewtonian fluid models of which are proposed by scientists
working in this area. Several empirical models are generally used to approximate the
experimental data are available for such fluids. Calculations en non-Newtonian media present
a new challenge in flow analysis. Simulating these types of flows in order to calculate pipe
and pump sizes presents a significant challenge to the engineer. We hope that the stress-strain
relationship along with possible proposed generalization for different type of non-Newtonian
fluids would be helpful to researchers and engineers for further expenimental and theoretical
study.
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